

FY21 DOE OE Energy Storage Program Annual Peer Review Meeting Oct. 26-28 Na Battery Session

(I) Intermediate Temperature Na Battery Technologies

(II) Long Duration/Seasonal Battery Development

Guosheng Li

Battery Chem & Electrochem Group Pacific Northwest National Laboratory

PNNL is operated by Battelle for the U.S. Department of Energy

FY21 Milestones and Plans for FY 22

Project Team:

- Dr. Mark Weller (new postdoc), Dr. Miller Li,
- Dr. Eugene Polikarpov, Dr. Keesung Han
- Dr. David Reed, Dr. Vince Sprenkle, and Dr. Guosheng Li

FY21			
Journal publications (2) & Milestone	 "High Performance Sodium-Sulfur Batteries at Low Temperature Enabled by Superior Molten Na Wettability" Chem. Comm. 57, 45 (2021). (Front Cover) 		
	2. "A High-Performance Na-Al Battery Based on Reversible NaAlCl ₄ Catholyte" <i>Adv. Energy Mater.</i> 10, 2001378 (2020).		
	3. "Recent Progress in Cathode Materials for Sodium-Metal Halide Batteries" Materials. 14, 3260 (2021). (review article)		
	4. 19 Wh 2-cell stack testing (Achieved).		
IP& Invention Reports	Licensing US patent 10,615,407 (Na-FeCl ₂ battery) Provisional IP application (Na wetting agent, in preparation)		
Collaboration	RIST (Dr. Keeyoung Jung), etc		

FY22:

- I. High performance and low-cost Na based battery for long duration application.
- 2. Large cell demonstration & OE/KETEP project (phase 2)

Challenges for High Temperature Na Batteries

Batteries	Temp. (°C)	OCV (V)	Energy density (Wh/kg)	SSE	Cycle life	Safety	Cost (\$/kWh)
Na-S	350	~2.0	~150	β"-alumina	> 3,000	Thermal runaway, limited thermal cycle	500
Na-NiCl ₂	280	2.58	~120	β"-alumina	>1,000	No thermal runaway	1,000

☐ Challenges for high temperature Na-NiCl₂ batteries:

- Manufacturing process of β"-alumina tube: dimension, microstructure, mechanical robust, etc.
- Cell Assembly for high temperature operation: Glass sealing, TCB, EBW, etc.
- Materials degradation at the high temperature: Corrosion, particle growth, etc.

□ PNNL strategies

- Develop intermediate temperature (<200°C) chemistries
- Planar-cell architecture enables lower materials cost and manufacturing cost.

NaS: 350°C (~\$500/kWh)

ZEBRA: 280°C (~\$1,000/kWh)

Voltage

Na Wetting on BASE (Miller Li)

Na wetting on smooth surface $W_{adh} = \gamma_m (1 + \cos \theta)$

Cassie drop

Na wetting on rough surface

Sunny-side-up drop

Wenzel drop

Low-Cost Na-MH Batteries for LDES

- Lower cost materials/system
- Fast kinetics/high-capacity loading
- Safety
- 4. Reliability/long cycle life

	Na-NiCl ₂	Na-FeCl ₂	Na-Al
Cathode	Ni/NaCl	Fe/NaCl	Al
S.E.	NaAlCl ₄	NaAlCl ₄	NaAlCl ₄
E(V)	2.58	2.35	1.6
Capacity (mAh/g)	305	310	308
Price (\$/lb)	20	0.5	0.8
Materials cost (\$/kWh)	<100	<5	<5
Duration (Hours)	6-8	~15	>15

Large Cell Test (OE/KETEP Project, Mark Weller)

Major Challenges Addressed:

Pressure buildup in sealed cell design (potential BASE fracture)

reservoir – enables higher capacity without 'dead' Na

- Pressure release holes & hermetic sealing via a secondary vessel (PNNL)
- Assembly under partial vacuum (RIST)
- Na-reservoir (~9 g sodium in each cell at the full charge) and 'dead' Na
 - Good/consistent Na wick (surface treated carbon felts/SS mesh)

Long Duration/Seasonal Energy Storage Technologies

• Project team:

Dr. Miller Li (postdoc), Dr. Aaron Hollas, Dr. Fred Park (postdoc),

Dr. Qian Huang, Dr. David Reed, Dr. Vince Sprenkle, and Dr. Guosheng Li

FY21	
Journal publications (PNNL lead)	 "Let Energy Freeze: A Thermal-Cycling Molten-Salt Battery for Seasonal Storage" (under review)
	"Concepts for All-Iron Redox Flow Batteries at Moderate pH" (manuscript in preparation)
IP& Invention Reports	Non-provisional IP application (Seasonal energy storage; Miller Li) Provisional IP application (Long duration technology; Aaron Hollas)

Thermocycling Battery Technologies for Seasonal Storage Application (Miller Li)

Supply Demand Season STORE AND REDISTRIBUTE

Challenges of Battery Technologies for Seasonal Storage:

- High cost
- Self-discharge via electrolytes

Schematic of Thermocycling Battery

- Low materials cost (~\$20/kWh)
- Low battery manufacturing cost
- High-capacity retention after long storage time

Li et al. (under review)

Low-Cost RFB for LDES (Miller Li, Qian Huang & Aaron Hollas)

- □ Decoupling of power and energy capacity is suitable for LDES
- ☐ High cost of VRFB is the main obstacle for wider market penetration
- □ Corrosive electrolytes with low pH

~\$13/lb

~\$0.5/lb

- Electrochemically reversible [Fe(bipy)₃]^{+2/3} and [Fe(EDTA)] ^{-1/2} have simple ligand designs, suitable for large-scale implementation
- However, crossover causes fast self-discharge.

Modifying bipy ligand can make partially anionic complex, which aligns the polarity of active molecules and stops crossover.

U.S. DEPARTMENT OF ENERGY

Office of Electricity (Dr. Imre Gyuk)

Thank You!

POC: Guosheng Li, Ph.D.

Email: guosheng.li@pnnl.gov

